Plant primary productivity: Environmental
Impacts on C-Fixation (EICF)
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Today

Quick Review

C, photosynthetic response to climate change
variables in the field

Physiological genomics of C, respiration
Gas exchange measurement theory

Gas exchange equipment demo (LiCOR 6400)
Paper discussion
C; photosynthesis model



CO, uptake rate (A)

Supply function

Intercellular CO,
concentration (c;)
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C, A/Ci curves have a different shape that reflects their
biochemistry

C; photosynthesis is stimulated directly by elevated CO,
Can you extend the supply functions on this curve?



Generic C, A/C. Response Curve
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From Leakey (2009) Proceedings of the Royal Society B

* C, crops are very important for global food production
* US Midwest produces 40% of the world’s annual maize crop
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Proposed interaction mechanism between water availability and
elevated CO, on C, photosynthesis
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*Simplified from Leakey (2009) Phil. Trans. Royal. Soc. B.



Hypotheses

HN
\ \ Limiting N supply will reduce
photosynthetic capacity,
\ resulting in CO,-limited A
under current [CO,]
Ci
No drought

ameliorated by elevated
[CO,]

Drought will increase
\ stomatal and non-stomatal
\ limitations to A, which are
C



Testing physiological mechanisms of maize response

to elevated [CO,]

SoyFACE - A unique facility to study soybean and maize at
future CO, and ozone concentrations, temperatures and
drought conditions
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EXPERIMENTAL DESIGN

FACE technology: 4 ambient [CO,] plots (380 pmol mol)

4 elevated [CO,] plots (550 pmol mol?)
Fumigation from planting to harvest
34N43 Pioneer Hi-Bred

Z. mays
@ O
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Elevated [CO,] has no effect on photosynthetic capacity in the absence of drought
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Combine midday field C. data with lab A/C. curves to examine
operating points

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany




Elevated [CO,] reduces stomatal conductance, but has no effect on photosynthetic capacity
in the absence of drought
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26,000 observations provides a high temporal and spatial resolution
of water availability
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Markelz, Strellner and Leakey (2011) Journal of Experimental Botany



No drought stress Drought stress
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Drought Stress
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Markelz, Strellner and Leakey (2011) Journal of Experimental Botany



Drought Stress
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Markelz, Strellner and Leakey (2011) Journal of Experimental Botany



Drought Stress
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Markelz, Strellner and Leakey (2011) Journal of Experimental Botany



Drought Stress

*Elevated [CO,] ameliorates
drought stress

*Low nitrogen exacerbates
drought stress

*No interaction between N and
CO,, effects were additive

Emm 2CO2_HN
s aCO2 LN
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Markelz, Strellner and Leakey (2011) Journal of Experimental Botany



Maize Grain Yield
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* Low N reduced yield by 20%

* Benefits of elevated [CO,] for leaf level photosynthesis
were not enough to contribute to an increase in yield

* Timing of the drought with plant development may be
important (i.e. silking date)

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany
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* Respiration provides the energy and
carbon skeletons needed for plant
growth and maintenance

* There is poor mechanistic
understanding of the link between
carbon supply, respiration rates, and
plant productivity



Pre-Genomics Era Post-Genomics Era

Global change
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Pritchard et al. (1999) Global Change Biology 5: 807-837 Leakey ADB, Ainsworth EA, Bernard SM, Markelz RJC, Ort
DR et al. (2009) Global Change Biology 15: 1201-1213

* Post-genomics era allows for a detailed systems level
understanding of climate change biology

e Study of plant responses through this integrative framework can
advance both mechanisms and provide targets for genetic
manipulation



Davey et al. 2004 Plant Phys.
Gifford 2003 Func. Plant Biol.
Wang and Curtis 2002 Plant Ecol.
0
Drake et al. 1999 P,C&E Carbohydrates +12 %

0 %

-18 % N content goes down

* |ncrease in respiration due to carbohydrate increase
(more supply)

* Decrease in respiration because protein turnover is the
major sink for respiratory energy (more demand)

* No change justified by cancellation of the other two
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Youngest Fully Expanded Leaf Assimilation
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These responses are consistent with the literature.

The stimulation of photosynthesis to elevated [CO,] was
greater under ample N availability and matches the biomass

response.

Greater substrate supply for respiration?



20

-
a
|

Starch (mmol m‘2)

[3,]

-
o
1

Midnight Leaf Starch Content

8

370

H 50

CO, Concentration

0
57% 44%

Glucose + Fructose + Sucrose (mmol m™2)

Limiting Ample
Nitrogen Level

Midnight Leaf Mobile Carbohydrate Content

370

B s

CO, Conc

entration

o
|

H
|

N
|

o
|

22%
26%

Limiting Ample
Nitrogen Level

* The stimulation of photosynthesis in elevated [CO,]
lead to greater leaf starch mobile carbohydrate
content at midnight.

* These responses are also consistent with literature.



Accurately measuring individual Arabidopsis leaf
respiration is non-trivial

Basic System Layout

Bottom of Leaf

4 ' Petiole groove Chamber
: b d E 8§
‘ i ) ] ' I, Rubber seal groove _g, '

I
Flow In =—> | |

Leaf Thermocouple Hole ————w>

emperature Control Jacket =>

FIow+
Temp Control Flow In=—> out

Five gas exchange systems running simultaneously allows one person to
accurately measure respiration rates of > 50 plants in less than two hours
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The stimulation of leaf respiration to elevated [CO,] was greater in the ample N
treatment

There was a stimulation of leaf respiration despite a reduction in leaf N in the limiting N
treatment

This system allows us to detect relatively small treatment differences (12%) that other
non-specialized systems failed to detect.
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Acotinase (AtACO2)
Succinate Dehydrogenase (AtSDH-1)

High correlations between transcript and
protein abundance (green boxes).

Fumerase (AtFUM1)

Electron-transfer flavoprotein:ubquinone
oxidoruductase

Poor correlations between transcript and
protein abundance ( ).

This lends support to greater transcript
abundance in elevated [CO,] for the TCA cycle
is leading to greater protein abundance.

Lee et al. (2012) Journ. Prot. Res. 11 3326-3343
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Days After Germination

R (pmol CO, m?s™)

Developing YMFE

Old

Leaf Developmental Stage

Past research focused on mature leaf tissue

Respiratory demand is greater for developing leaves due
to growth and maintenance processes

How is the stimulation of respiration in elevated [CO,]
coordinated through leaf development?



Systemic Signaling

Adaxial

Abaxial

Lake et al. (2002) J. Exp. Bot. 228: 651-662;
Coupe et al. (2006) J. Exp. Bot. 57: 329-341

Systemic signaling from mature leaves
in elevated [CO,] to developing leaves
not in elevated [CO,] alters epidermal
patterning

Mature leaves relaying information to
developing leaves about
environmental conditions

Source-Sink Relationships

pCH11

Schneidereit et al. (2008) Planta 228: 651-662

AtSUC2 promotor:GUS Fusion---Blue is
where sucrose can be transported into the
phloem for distribution around the plant

Clear sink-to-source developmental
transition starting at the leaf tip



Combine physiology, high-throughput phenotyping, and genomics

Mature
Timepoint
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Days After Germination

* Leaf respiration decreases across leaf development

* No difference in respiration rates between ambient and elevated
[CO,] in rapidly expanding sink tissue

* Greater leaf respiration rates in elevated [CO,] as leaves transition
into source tissues later in leaf development
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No detectable leaf starch content during expanding time-point (23 DAG)
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* The difference in transcript abundance ambient and elevated [CO,] increases as
leaves develop
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Open gas exchange system !

sample

[CO,]

ref

A = ([CO,] .—[CO,] )*flow rate/

ref sample



Beer s Law

A=I,-1,

1 is intensity

A = alc

A is absorption

a. is absorption coefficient
[ is pathlength

C IS concentration




4 key components of IRGA-based gas exchange system

Gold Plated Pressure Transducer
Parabolic Rellector Gold Plated
Optical Path CO; Filters
/ 3958& 426 um U

Broac Band IR Source

>
H,0 Filters =

Thermistor
35&259um ©asOutl

Gas Inlet

\Heahng Element

R Gas cell

IR source = photodiode Detector

Optical filter

Detector V a source IR — IR absorbed by CO, or H,0

So, 1oncentration abdorbance and signal&t detector



Absorptivity

ABSORPTION SPECTRA FOR MAJOR NATURAL
GREENHQUSE GASES IN THE EARTH’S ATMOSPHERE
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Advantages of open gas exchange system

eSteady state conditions — no change in [CO,] or [H,0]
eEasy to control and vary RH, temperature, c.

Disadvantages of open gas exchange system

eRequires appropriate leaf area/rate to be sampled to get
sufficient signal to noise ratio

[CO,]is _WW\C/\V‘- tnmse |
signa
[CO,lows JWJV\AAA#‘V¥ tnmse




Open gas exchange system
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Steady state conditions allow easy measurement of
response curves (A/c, light, vpd) and dynamic
photosynthesis in response to sunflecks, O, pulses...



Open gas exchange system !

sample

[CO,]

ref

A = ([CO,] .—[CO,] )*flow rate/

ref sample



Make sure the 6 o-rings are in
place (3 upper, 3 lower)

Figure 27-7. The LCF lower chamber attached, and the upper chamber ready.

&

er for fan

and red LEDs
'., . -

-.

Figure 27-8. The LCF attached to the sensor head. The main cable can be routed
behind the quantum sensor, and through the tripod mount (vremove to do this).






